On Groups Whose Subgroups Are Closed in the Profinite Topology

نویسندگان

  • Derek J. S. Robinson
  • Alessio Russo
  • Giovanni Vincenzi
چکیده

A group is called extended residually finite (ERF) if every subgroup is closed in the profinite topology. The ERF-property is studied for nilpotent groups, soluble groups, locally finite groups and FC-groups. A complete characterization is given of FC-groups which are ERF. 2000 Mathematics Subject Classification: Primary 20E26.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting the Closed Subgroups of Profinite Groups

The sets of closed and closed-normal subgroups of a profinite group carry a natural profinite topology. Through a combination of algebraic and topological methods the size of these subgroup spaces is calculated, and the spaces partially classified up to homeomorphism.

متن کامل

Classifying Spaces of Subgroups of Profinite Groups

The set of all closed subgroups of a profinite carries a natural profinite topology. This space of subgroups can be classified up to homeomorphism in many cases, and tight bounds placed on its complexity as expressed by its scattered height.

متن کامل

Doubles of groups and hyperbolic LERF 3 - manifolds

We show that the quasiconvex subgroups in doubles of certain negatively curved groups are closed in the profinite topology. This allows us to construct the first known large family of hyperbolic 3-manifolds such that any finitely generated subgroup of the fundamental group of any member of the family is closed in the profinite topology.

متن کامل

Profinite Topologies in Free Products of Groups

Let H be an abstract group and let C be a variety of finite groups (i.e., a class of finite groups closed under taking subgroups, quotients and finite direct products); for example the variety of all finite p-groups, for a fixed prime p. Consider the smallest topology on H such that all the homomorphism H −→ C from H to any group C ∈ C (endowed with the discrete topology) is continuous. We refe...

متن کامل

Separable Subsets of Gferf Negatively Curved Groups

A word hyperbolic group G is called GFERF if every quasiconvex subgroup coincides with the intersection of finite index subgroups containing it. We show that in any such group, the product of finitely many quasiconvex subgroups is closed in the profinite topology on G.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008